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Abstract 
This work-in-progress paper describes attempted 
improvements on Pachet’s Description-Based Design 
(DBD), a system that uses machine learning to generate 
melodies. We discuss in depth both Description-Based 
Design and our extensions to Pachet’s original approach. 
We also present a user study in which users had some 
success in transforming melodies and describe the 
implications of these results for future work. 

 Introduction  
There has been significant research into creating computer 
applications with “musical intelligence” by combining 
machine learning, Markov models, and other mathematical 
tools with music theory. However, very few tools exist that 
are “musically intelligent” and highly customizable by 
musicians.  

In Pachet’s 2009 paper “Description-Based Design of 
Melodies,” he outlines a process that allows musicians to 
stochastically generate highly customized melodies 
without requiring any programming or knowledge of 
computer science. Pachet’s implementation supports 
generation and modification of melodies according to a 
very specific set of criteria. We have implemented several 
modifications to Pachet’s original approach, with the goal 
of supporting musically-intelligent melody generation and 
modification based on a wider array of criteria. We begin 
this paper by discussing some properties of computer-aided 
composition systems and providing a more detailed 
description of Description-Based Design (DBD). We then 
discuss our motivation for extending Pachet’s work, 
describe our implementation, and present a user study for 
evaluating the effectiveness of our changes. Then, we 
discuss the results of the user study and their implications 
for future work.   
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Background 

Existing music composition software may be considered 
with regard to two characteristics: “built-in musical 
intelligence” and “customizability.” We say systems with 
in-built intelligence are those designed using knowledge of 
musical rules and patterns, and that have the ability to 
apply these patterns in the modification or generation of 
music. We say systems are customizable if they have 
functionality that can be flexibly re-configured by the user.  

The Continuator, an interactive improvisation system 
that uses machine learning and Markov models, is an 
example of a music generation system with built-in 
musical intelligence (Pachet 2003). Cope’s “Experiments 
in Musical Intelligence” is another such system; it uses 
augmented transition networks and pattern detection 
techniques to “learn” the styles of various classical 
composers and recreate music in their respective styles 
(Cope 1996). 

By encoding specific rules or constraints for music 
generation, or by learning valid musical patterns from data, 
such types of musically intelligent systems can serve 
composers by generating new material (e.g., melodies) that 
is musically appropriate to a given context. Such content 
could be incorporated into a new composition or live 
performance as-is, or it could serve to inspire a composer 
by introducing examples of yet-unconsidered posssibilities. 

A drawback of many prior approaches to musically-
intelligent content generation is that they encode musical 
norms or constraints in a way that cannot easily be 
modified by a composer to suit his or her musicial style or 
purpose. A goal of our work is therefore to build a 
musically-intelligent melody generation system that is 
more highly customizable. Furthermore, we aim to allow 
customization without the use of programming, in order to 
support effective use by non-programmers.  

Description-Based Design 
Pachet’s Description-Based Design bridges the gap 
between customizability and musical intelligence. It allows 
users to define a musical descriptor (e.g., “jazzy”) and 



transform existing melodies to be more like or less like the 
descriptor (e.g., more or less jazzy).  

Users of Pachet’s system can teach the computer a 
model of the relationship between properties (“features”) 
of the music and user-defined descriptors using the 
following process: the user tags melodies output by the 
system, which are produced by a random melody 
generator, with whatever descriptor he or she desires (e.g., 
jazzy, funky, dissonant, smooth, etc.). For each user-
defined descriptor “x,” the system trains a binary classifier 
using melodies tagged as “x” as positive examples, and 
melodies without the tag “x” as negative examples.  

After having learned the model of a descriptor, the 
system can be applied to transform a melody to be “more 
x” or “less x.” The system generates a large number of 
variations of the source melody through the following 
process: Starting with a set that initially contains only the 
source melody, the system repeatedly removes a random 
melody from the set, creates a variation of it using a 
variation function, and then adds both the melody and its 
variation back to the set. Each generated variation is tested 
against the user’s criterion (e.g., to test whether it is “more 
x”); of the variations that satisfy the criterion, the variation 
most similar to the original melody is returned to the user. 

Pachet’s Description-Based Design is a tool that merges 
customizability with musical intelligence. The choices 
made in the design of the random melody generator and the 
choice of musical features comprise the hardcoded 
intelligence of the system, and the support for user-defined 
tags provides a high degree of customizability. 

Motivation 
The original DBD system uses a hard-coded set of musical 
features: the number of notes in a melody, the mean value 
of a pitch sequence, the mean value of a pitch interval 
sequence, the mean value of MIDI velocity, tonal weight 
(an indication of how tonal a melody is), pitch 
compressibility ratio (an indication of repetitiveness), and 
interval compressibility ratio. The system is only able to 
learn descriptors that can be modeled by these features (by 
a support vector machine classifier). Indeed, Pachet (2009) 
evaluates the system’s ability to learn five simple 
descriptors with relatively clear relationships to these 
features (e.g., “tonal,” “serial,” “short”). Further, the 
original DBD system provided a unique random melody 
generator for each tag, making it easy to create melodies of 
a given style for users to tag. 

The motivation of our work is to support a larger set of 
descriptors through use of a more general feature set and a 
single, more general random melody generator. Also, while 
Pachet’s system included only a minimal user interface, we 
have aimed to allow more intuitive and flexible end-user 
control. 

Implementation 
Machine Learning Features 
In order to accurately learn a more diverse set of 
descriptors from small training sets of hand-labeled 
melodies, our new implementation of DBD uses six new 
melody analysis features. Three of these features (nos. 1–3 
below) pertain to high-level melodic properties described 
by Tymoczko (2011), who argues that there are five 
fundamental properties shared by all Western tonal music. 
For the properties used in the feature set, Tymoczko gives 
the following descriptions: 
• Conjunct melodic motion: “Melodies tend to move by 

short distances from note to note…” 
• Limited macroharmony: “I [Tymoczko] use the term 

‘macroharmony’ to refer to the total collection of notes 
heard over moderate spans of musical time. Tonal 
music tends to use relatively small macroharmonies, 
often involving five to eight notes.” 

• Centricity: “Over moderate spans of musical time, one 
note is heard as being more prominent than the others, 
appearing more frequently and serving as a goal of 
musical motion.” (Tymoczko 4) 

The typically small size of the training sets in DBD 
necessitates a small feature set for reliable classification, so 
the fact that Tymoczko’s properties are a small set with 
wide stylistic applicability and a single music-theoretic 
basis was attractive. 

The other three of our features (nos. 4–6 below) are 
defined as rhythmic analogs to these melodic features. 
Specifically, our system calculates the following features:  
1. Melodic Conjunctness: the average of the absolute sizes 

of all intervals between notes.  
2. Melodic Centricity: The fraction of notes that are the 

first, third, or fifth scale degrees in the most likely key.  
3. Limited Macroharmony: The percentage of notes in 

the most likely key divided by the variance of the MIDI 
note values. This is a measure of how “focused” the 
melody is. It takes into account the adherence to a 
diatonic scale and the variation in the set of pitches used 
by the melody.  

4. Rhythmic Conjunctness: The geometric mean of the 
larger of the two ratios between consecutive durations. 
This is a measure of how much the rhythm changes.  

5. Rhythmic Centricity: The fraction of metric accents at 
which note onsets fall exactly (beats 1 and 3 in 4/4 time; 
beat 1 in 3/4). 

6. Rhythmic Self-Similarity: The average “difference” 
between measures, as measured by the Levenshtein 
distance (Levenshtein 1965) on the duration lists of the 
measures.  

The music21 toolkit (Ariza 2000) was used to implement 
computation of these features from the melodies, which 
were represented in the system as pitch and duration lists. 



Random Generators 
Pachet (2009) implemented a unique random generator for 
each descriptor used in his evaluation. However, in a more 
general-purpose system, any descriptor could potentially 
be used. Therefore, we aimed to implement a single 
random generator capable of producing variations along all 
features. We implemented and evaluated two alternative 
generators, described below. 
Generator 1: 
This random melody generator relies solely on two 
variation functions. The melodic variation function applies 
a small variation to a melody either by randomly selecting 
a note and changing its pitch, or by adding or removing a 
note from the melody. The rhythmic variation function 
converts the rhythm into an “onset vector” (Post and 
Toussaint 2011) and shifts the onset times of notes in the 
melody. To generate a new melody, we start with a “flat” 
phrase (one where all notes have the same pitch and 
duration) and apply the variation functions repeatedly 
(specifically, the number of applications is equal to five 
times the number of notes in the melody). The probability 
that a variation will produce a note in the “most likely key” 
of the melody is 80%. 
Generator 2: 
First, a time signature (3/4 or 4/4) is randomly selected. 
Then, a one-measure-long random onset vector is created. 
This single measure is concatenated four times to create 
the rhythmic “frame” for the whole phrase. The rhythmic 
variation function is applied a random number of times 
(from zero to six). A “flat” melody (where all notes are the 
same pitch) is then added on top of the rhythmic frame, 
and the melodic variation function is called a random 
number of times (from two to five times the number of 
notes in the phrase). These variations aggregate into a 
distinct melody. The variation is applied so that, on 
average, 90% of the time the new note is in the key of the 
phrase. Finally, the melody is “flattened” by removing 
solitary jumps. Solitary jumps are single notes that are 
either much higher or lower than both their immediate 
neighbors. These are brought within a perfect fifth of the 
value of their closest neighbor.   
Finding the most likely key: 
A deterministic algorithm is used to find the most likely 
key for a phrase. We rank the degrees of the major scale in 
descending order of their importance as follows: 

€ 

ˆ 1 , ˆ 5 , ˆ 3 , ˆ 4 , ˆ 7 , ˆ 6 , ˆ 2 . We assign each degree a utility value 
according to its rank in this list; the most important degree 
(

€ 

ˆ 1 ) has utility 7, the second most (

€ 

ˆ 5 ) has utility 6, and so 
on. A utility value for a phrase can thus be computed for 
each key, by computing the sum of the utilities of the 
degree of each note in the phrase. (Notes not in the given 
key are given a utility of zero.) The most likely key is 
identified as the key with the highest overall utility.  

User Interface 
Users interact with the system via a graphical user 
interface (Figures 1–3). In this interface, the user initiates 
random generation of a set of melodies, selects melodies to 
tag as positive or negative examples for any user-defined 
descriptor, and initiates training of a descriptor model from 
its current set of positive and negative examples. After 
taking these steps, the system can use the variation 
functions and descriptor models to create variations on 
melodies that are “more” or “less” like any descriptor. 

Users can also drag and drop MIDI files into the system 
to serve as positive and negative training examples for a 
descriptor. This allows users to compose custom training 
melodies in an environment such as Ableton Live. We 
thought that users might be able to manually craft training 
melodies that were “stronger” positive and negative 
examples than those generated by the random generator, 
thus allowing descriptors to be learned more accurately 
and/or with fewer examples. 

Descriptor Learning 
Descriptors were learned from examples using decision 
trees boosted by AdaBoost (Freund and Schapire 1999), as 
implemented in the Weka learning library (Witten and 
Frank 2005).  

 
Figure 1: Training window 

 

 
Figure 2. Tagging window 

 
Figure 3. Transforming window 



Evaluation 
We conducted a preliminary evaluation of the system to 
assess the ease of use and quality of music generated. 

Procedure 
Five subjects were recruited through mailing lists at our 
university. They varied in their level of programming 
experience (one had no experience, three had some, and 
one had substantial experience) and musical proficiency 
(one had no musical training, one had training but did not 
perform regularly, one actively performed but did not write 
music, and two both actively wrote and performed). All 
were undergraduate students, three female and two male. 
All respondents to the call for testers were taken. 

Users were individually led through the following steps: 
1. The goals of the system were explained verbally to the 

user, then all major functionality was demonstrated once. 
2. The user was asked to spend 20 minutes teaching the 

system the concept of “funky,” by generating random 
melodies and selecting positive and negative examples 
of funkiness. 

3. The user was asked to spend another 20 minutes training 
another classifier or playing “freely” with the system. 

4. The user completed a written questionnaire and was then 
interviewed about his experience. 
The questionnaire asked users about the simplicity of the 

interface, their satisfaction with the music produced by the 
system, and the overall usability/usefulness of the system. 
The design of the questionnaire was influenced by the 
work of Csikszentmihalyi (1990), which presented the idea 
of “flow,” of moving from goal to goal and task to task 
without hesitation. The questionnaire asked about users’ 
ability to navigate the interface without interruption. The 
questionnaire responses were used as a launching point for 
the subsequent interview. 

Results 

Pilot Test 
First, a pilot test was run with one user, a person with no 
experience in either programming or music composition. 
The test revealed that the melodies created by the random 
generator (Generator 1) were too “random” sounding and 
too similar to each other, leaving the user unable to judge 
whether a given melody was at all funky. This user (and, 
later on, another informal tester) remarked that there did 
not seem to be any “melodicness” in the note patterns, that 
the rhythms were too unpredictable, and that there were 
surprisingly large intervallic jumps. These results 
prompted the design of Generator 2.  

Subsequent Evaluation 
Generator 2 was used in a subsequent evaluation with four 
people. In this evaluation, hardware malfunctions 
prevented users from successfully using the piano 
keyboard to write custom melodies during the tests. Thus, 
users were limited to selecting system-generated melodies 
to serve as “source melodies” to transform. All users 
followed the testing procedure as described above. 

All users had difficulty classifying melodies as “funky,” 
saying that the melodies still sounded too “random” to 
accurately judge. However, all users were able to 
distinguish between melodies that they liked and disliked, 
which was not the case with users who tested Generator 1. 
Overall, users found the interface easy to use after a brief 
tutorial, but two commented that they would have had 
difficulty knowing what to do without some initial 
prompting. The two users with songwriting experience 
spent much more time listening to the randomly generated 
melodies, often listening to the same melodies multiple 
times.  One user trained a classifier on melodies he “liked” 
and “disliked” and was able to create variations that he 
claimed sometimes improved on the original melody. 

Discussion 

User Interactions 
Users’ level of concentration when playing with the system 
was strongly correlated with experience in writing music 
rather than music theory knowledge or performance 
experience. Users seemed bored by tagging training 
examples, and all used the full allotted time for training. 
Improvements to the tagging process are discussed later. 

Random Melody Generator 
Creating a “general-purpose” random melody generator 
was one of the design challenges we faced. An ideal 
generator would produce melodies of all types, so that for 
any descriptor, positive training examples could potentially 
be generated. Generator 1 enforced only the condition that, 
on average, 80% of the notes in the melody should fit into 
the most likely key. Unfortunately, most of the resulting 
melodies had few perceivable patterns in their rhythmic or 
melodic structure, sounding for the most part like random 
keys being hit on a piano instead of a coherent melody. 
 The users’ criticisms of the random melodies produced 
by Generator 1 (that they were too rhythmically varied, 
dissonant, and had large jumps) indicated that the 
Generator 1 was not adhering strongly enough to 
Tymoczko’s properties. In order to improve the quality of 
the melodies without introducing too many arbitrary 
limitations, our second melody generator only enforced 
those of Tymoczko’s properties which Generator 1 had 
“violated.” Most melodies in Western music have 
subsegments with similar rhythmic patterns. Therefore, 



when designing Generator 2, generating rhythms based on 
variations of single-measure rhythms seemed justified. 
Since users found Generator 1’s melodies too “atonal,” the 
in-key percentage of Generator 2 was increased, with 90% 
being chosen through listening and tweaking. “Flattening,” 
as described for Generator 2, was a heuristic that was 
implemented to more strongly enforce “Conjunct Melodic 
Motion,” one of Tymoczko’s properties of tonal music 
stating that melodies generally move in steps of small 
intervals. The interval of a fifth was arbitrarily chosen 
because it is fairly common and relatively large interval.  

Machine Learning and User Interaction 
During the initial design phase, we realized that the 
interface design would have a substantial effect on the 
quality of the machine-learned classifier. If the interface 
was clunky or confusing, it would take users longer to tag 
or write training melodies. As a result, there would be 
fewer tagged melodies, or those tagged could be of a lower 
quality. Because of the low number of examples in the 
training set, the difference in the training set caused by a 
bad interface could be significant. Based on the results of 
the evaluation, it seems reasonable to conclude that the 
quality of randomly generated melodies far outweighs the 
interface as the bottleneck for satisfactory training. 

Future Work 

Interface Improvements 
By far the slowest task performed by users was the tagging 
process, moreso for users with less musical experience. 
One solution to speed up this process is to make the 
tagging process optional. Users could be given a handful of 
premade classifiers to use “out of the box.” These premade 
classifiers could be “hand-built,” or they could be 
generated from crowd-sourced tags. However, if users 
wanted to customize the classifiers, they could add their 
own training examples, weight their new training examples 
relative to the original examples used to train the classifier, 
and retrain the classifier using both old and new examples.  

Tagging could also be replaced with pair-wise 
comparisons between two melodies, where a user is given 
two melodies and asked to judge which one is “more x.” 
These pair-wise comparisons could be used to train a 
ranking SVM (Joachims 2002). From an interaction 
perspective, pair-wise comparisons may be a more 
comfortable task for users than assigning positive or 
negative tags to melodies, as users would only have to 
consider two melodies instead of trying to remember an 
“average” against which to compare. 

Data collection 
Pachet advocates for the collection of crowd-sourced 
tagging data in building classifiers. Such data could be 

very helpful both in creating premade classifiers and in 
feature selection. 

User tags could either be collected directly from users’ 
systems, or by farming the tagging to Amazon Mechanical 
Turk (AMT). AMT could be used in a manner similar to 
the work of Chaudhary and Koltun (2010), who collected 
tags relevant to 3D modeling. Here, AMT users might be 
given two melodies, and asked to rank one of them as more 
“x” than the other, with “x” being any adjective descriptor 
of their choosing. Sets of melodies tagged with synonyms 
could be combined. The pairs for each descriptor set could 
then be used to train a ranking SVM.   
 Building up a large set of tagged or ranked examples 
could also be useful in feature selection. With a set of 
baseline data, we could evaluate the effectiveness of a 
wider set of music analysis features with respect to their 
relevance in classifying melodies according to descriptors.  

Random Melody Generation 
Rather than relying on a random melody generator to 
produce melodies for the user to tag, we could start with a 
large set of pre-made, “satisfactory” melodies—ones that 
have been determined (by some criteria) to be “melodic” 
enough for a general user to work with. Once a user starts 
tagging these melodies to train a concept classifier, the 
system could take an active learning approach, prompting 
the user to tag the pre-made melodies that are likely to be 
most useful in improving the classifier. 

Currently, we are researching new random generation 
approaches that allow users different modes of control over 
the melodic or rhythmic structure. For example, given a 
user-provided rhythm and a set of notes, melodies could be 
produced using only those notes and similar rhythms. This 
approach could support production of more appropriately 
structured melodies without sacrificing generality. Current 
challenges include determining the choice of structural 
elements and the design of an effective user interface. 

Conclusion 
We have described a new system that builds on Pachet’s 
Description-Based Design. Our system attempts to 
combine musical intelligence with a higher degree of end-
user customizability. An evaluation of our system has 
identified a few critical avenues for improvement. First, the 
end-user tagging process can be arduous and unpleasant. 
Second, the creation of a good general-purpose random 
melody generator—capable of generating melodies that are 
both diverse enough and “melodic” enough to serve as 
appropriate positive or negative examples of arbitrary 
descriptors—remains challenging. Our current and future 
work aims to address these challenges through the use of 
crowd-sourced data collection and new mechanisms for 
user guidance of melody generation algorithms. 
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