

Expansion on Description-Based Design of Melodies

Avneesh Sarwate
Department of Computer Science,

Princeton University, Princeton, New Jersey
asarwate@princeton.edu

Rebecca Fiebrink
Department of Computer Science (also Music),

Princeton University, Princeton, New Jersey
fiebrink@cs.princeton.edu

Abstract
This work-in-progress paper describes attempted
improvements on Pachet’s Description-Based Design
(DBD), a system that uses machine learning to generate
melodies. We discuss in depth both Description-Based
Design and our extensions to Pachet’s original approach.
We also present a user study in which users had some
success in transforming melodies and describe the
implications of these results for future work.

 Introduction
There has been significant research into creating computer
applications with “musical intelligence” by combining
machine learning, Markov models, and other mathematical
tools with music theory. However, very few tools exist that
are “musically intelligent” and highly customizable by
musicians.

In Pachet’s 2009 paper “Description-Based Design of
Melodies,” he outlines a process that allows musicians to
stochastically generate highly customized melodies
without requiring any programming or knowledge of
computer science. Pachet’s implementation supports
generation and modification of melodies according to a
very specific set of criteria. We have implemented several
modifications to Pachet’s original approach, with the goal
of supporting musically-intelligent melody generation and
modification based on a wider array of criteria. We begin
this paper by discussing some properties of computer-aided
composition systems and providing a more detailed
description of Description-Based Design (DBD). We then
discuss our motivation for extending Pachet’s work,
describe our implementation, and present a user study for
evaluating the effectiveness of our changes. Then, we
discuss the results of the user study and their implications
for future work.

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Background

Existing music composition software may be considered
with regard to two characteristics: “built-in musical
intelligence” and “customizability.” We say systems with
in-built intelligence are those designed using knowledge of
musical rules and patterns, and that have the ability to
apply these patterns in the modification or generation of
music. We say systems are customizable if they have
functionality that can be flexibly re-configured by the user.

The Continuator, an interactive improvisation system
that uses machine learning and Markov models, is an
example of a music generation system with built-in
musical intelligence (Pachet 2003). Cope’s “Experiments
in Musical Intelligence” is another such system; it uses
augmented transition networks and pattern detection
techniques to “learn” the styles of various classical
composers and recreate music in their respective styles
(Cope 1996).

By encoding specific rules or constraints for music
generation, or by learning valid musical patterns from data,
such types of musically intelligent systems can serve
composers by generating new material (e.g., melodies) that
is musically appropriate to a given context. Such content
could be incorporated into a new composition or live
performance as-is, or it could serve to inspire a composer
by introducing examples of yet-unconsidered posssibilities.

A drawback of many prior approaches to musically-
intelligent content generation is that they encode musical
norms or constraints in a way that cannot easily be
modified by a composer to suit his or her musicial style or
purpose. A goal of our work is therefore to build a
musically-intelligent melody generation system that is
more highly customizable. Furthermore, we aim to allow
customization without the use of programming, in order to
support effective use by non-programmers.

Description-Based Design
Pachet’s Description-Based Design bridges the gap
between customizability and musical intelligence. It allows
users to define a musical descriptor (e.g., “jazzy”) and

transform existing melodies to be more like or less like the
descriptor (e.g., more or less jazzy).

Users of Pachet’s system can teach the computer a
model of the relationship between properties (“features”)
of the music and user-defined descriptors using the
following process: the user tags melodies output by the
system, which are produced by a random melody
generator, with whatever descriptor he or she desires (e.g.,
jazzy, funky, dissonant, smooth, etc.). For each user-
defined descriptor “x,” the system trains a binary classifier
using melodies tagged as “x” as positive examples, and
melodies without the tag “x” as negative examples.

After having learned the model of a descriptor, the
system can be applied to transform a melody to be “more
x” or “less x.” The system generates a large number of
variations of the source melody through the following
process: Starting with a set that initially contains only the
source melody, the system repeatedly removes a random
melody from the set, creates a variation of it using a
variation function, and then adds both the melody and its
variation back to the set. Each generated variation is tested
against the user’s criterion (e.g., to test whether it is “more
x”); of the variations that satisfy the criterion, the variation
most similar to the original melody is returned to the user.

Pachet’s Description-Based Design is a tool that merges
customizability with musical intelligence. The choices
made in the design of the random melody generator and the
choice of musical features comprise the hardcoded
intelligence of the system, and the support for user-defined
tags provides a high degree of customizability.

Motivation
The original DBD system uses a hard-coded set of musical
features: the number of notes in a melody, the mean value
of a pitch sequence, the mean value of a pitch interval
sequence, the mean value of MIDI velocity, tonal weight
(an indication of how tonal a melody is), pitch
compressibility ratio (an indication of repetitiveness), and
interval compressibility ratio. The system is only able to
learn descriptors that can be modeled by these features (by
a support vector machine classifier). Indeed, Pachet (2009)
evaluates the system’s ability to learn five simple
descriptors with relatively clear relationships to these
features (e.g., “tonal,” “serial,” “short”). Further, the
original DBD system provided a unique random melody
generator for each tag, making it easy to create melodies of
a given style for users to tag.

The motivation of our work is to support a larger set of
descriptors through use of a more general feature set and a
single, more general random melody generator. Also, while
Pachet’s system included only a minimal user interface, we
have aimed to allow more intuitive and flexible end-user
control.

Implementation
Machine Learning Features
In order to accurately learn a more diverse set of
descriptors from small training sets of hand-labeled
melodies, our new implementation of DBD uses six new
melody analysis features. Three of these features (nos. 1–3
below) pertain to high-level melodic properties described
by Tymoczko (2011), who argues that there are five
fundamental properties shared by all Western tonal music.
For the properties used in the feature set, Tymoczko gives
the following descriptions:
• Conjunct melodic motion: “Melodies tend to move by

short distances from note to note…”
• Limited macroharmony: “I [Tymoczko] use the term

‘macroharmony’ to refer to the total collection of notes
heard over moderate spans of musical time. Tonal
music tends to use relatively small macroharmonies,
often involving five to eight notes.”

• Centricity: “Over moderate spans of musical time, one
note is heard as being more prominent than the others,
appearing more frequently and serving as a goal of
musical motion.” (Tymoczko 4)

The typically small size of the training sets in DBD
necessitates a small feature set for reliable classification, so
the fact that Tymoczko’s properties are a small set with
wide stylistic applicability and a single music-theoretic
basis was attractive.

The other three of our features (nos. 4–6 below) are
defined as rhythmic analogs to these melodic features.
Specifically, our system calculates the following features:
1. Melodic Conjunctness: the average of the absolute sizes

of all intervals between notes.
2. Melodic Centricity: The fraction of notes that are the

first, third, or fifth scale degrees in the most likely key.
3. Limited Macroharmony: The percentage of notes in

the most likely key divided by the variance of the MIDI
note values. This is a measure of how “focused” the
melody is. It takes into account the adherence to a
diatonic scale and the variation in the set of pitches used
by the melody.

4. Rhythmic Conjunctness: The geometric mean of the
larger of the two ratios between consecutive durations.
This is a measure of how much the rhythm changes.

5. Rhythmic Centricity: The fraction of metric accents at
which note onsets fall exactly (beats 1 and 3 in 4/4 time;
beat 1 in 3/4).

6. Rhythmic Self-Similarity: The average “difference”
between measures, as measured by the Levenshtein
distance (Levenshtein 1965) on the duration lists of the
measures.

The music21 toolkit (Ariza 2000) was used to implement
computation of these features from the melodies, which
were represented in the system as pitch and duration lists.

Random Generators
Pachet (2009) implemented a unique random generator for
each descriptor used in his evaluation. However, in a more
general-purpose system, any descriptor could potentially
be used. Therefore, we aimed to implement a single
random generator capable of producing variations along all
features. We implemented and evaluated two alternative
generators, described below.
Generator 1:
This random melody generator relies solely on two
variation functions. The melodic variation function applies
a small variation to a melody either by randomly selecting
a note and changing its pitch, or by adding or removing a
note from the melody. The rhythmic variation function
converts the rhythm into an “onset vector” (Post and
Toussaint 2011) and shifts the onset times of notes in the
melody. To generate a new melody, we start with a “flat”
phrase (one where all notes have the same pitch and
duration) and apply the variation functions repeatedly
(specifically, the number of applications is equal to five
times the number of notes in the melody). The probability
that a variation will produce a note in the “most likely key”
of the melody is 80%.
Generator 2:
First, a time signature (3/4 or 4/4) is randomly selected.
Then, a one-measure-long random onset vector is created.
This single measure is concatenated four times to create
the rhythmic “frame” for the whole phrase. The rhythmic
variation function is applied a random number of times
(from zero to six). A “flat” melody (where all notes are the
same pitch) is then added on top of the rhythmic frame,
and the melodic variation function is called a random
number of times (from two to five times the number of
notes in the phrase). These variations aggregate into a
distinct melody. The variation is applied so that, on
average, 90% of the time the new note is in the key of the
phrase. Finally, the melody is “flattened” by removing
solitary jumps. Solitary jumps are single notes that are
either much higher or lower than both their immediate
neighbors. These are brought within a perfect fifth of the
value of their closest neighbor.
Finding the most likely key:
A deterministic algorithm is used to find the most likely
key for a phrase. We rank the degrees of the major scale in
descending order of their importance as follows:

€

ˆ 1 , ˆ 5 , ˆ 3 , ˆ 4 , ˆ 7 , ˆ 6 , ˆ 2 . We assign each degree a utility value
according to its rank in this list; the most important degree
(

€

ˆ 1) has utility 7, the second most (

€

ˆ 5) has utility 6, and so
on. A utility value for a phrase can thus be computed for
each key, by computing the sum of the utilities of the
degree of each note in the phrase. (Notes not in the given
key are given a utility of zero.) The most likely key is
identified as the key with the highest overall utility.

User Interface
Users interact with the system via a graphical user
interface (Figures 1–3). In this interface, the user initiates
random generation of a set of melodies, selects melodies to
tag as positive or negative examples for any user-defined
descriptor, and initiates training of a descriptor model from
its current set of positive and negative examples. After
taking these steps, the system can use the variation
functions and descriptor models to create variations on
melodies that are “more” or “less” like any descriptor.

Users can also drag and drop MIDI files into the system
to serve as positive and negative training examples for a
descriptor. This allows users to compose custom training
melodies in an environment such as Ableton Live. We
thought that users might be able to manually craft training
melodies that were “stronger” positive and negative
examples than those generated by the random generator,
thus allowing descriptors to be learned more accurately
and/or with fewer examples.

Descriptor Learning
Descriptors were learned from examples using decision
trees boosted by AdaBoost (Freund and Schapire 1999), as
implemented in the Weka learning library (Witten and
Frank 2005).

Figure 1: Training window

Figure 2. Tagging window

Figure 3. Transforming window

Evaluation
We conducted a preliminary evaluation of the system to
assess the ease of use and quality of music generated.

Procedure
Five subjects were recruited through mailing lists at our
university. They varied in their level of programming
experience (one had no experience, three had some, and
one had substantial experience) and musical proficiency
(one had no musical training, one had training but did not
perform regularly, one actively performed but did not write
music, and two both actively wrote and performed). All
were undergraduate students, three female and two male.
All respondents to the call for testers were taken.

Users were individually led through the following steps:
1. The goals of the system were explained verbally to the

user, then all major functionality was demonstrated once.
2. The user was asked to spend 20 minutes teaching the

system the concept of “funky,” by generating random
melodies and selecting positive and negative examples
of funkiness.

3. The user was asked to spend another 20 minutes training
another classifier or playing “freely” with the system.

4. The user completed a written questionnaire and was then
interviewed about his experience.
The questionnaire asked users about the simplicity of the

interface, their satisfaction with the music produced by the
system, and the overall usability/usefulness of the system.
The design of the questionnaire was influenced by the
work of Csikszentmihalyi (1990), which presented the idea
of “flow,” of moving from goal to goal and task to task
without hesitation. The questionnaire asked about users’
ability to navigate the interface without interruption. The
questionnaire responses were used as a launching point for
the subsequent interview.

Results

Pilot Test
First, a pilot test was run with one user, a person with no
experience in either programming or music composition.
The test revealed that the melodies created by the random
generator (Generator 1) were too “random” sounding and
too similar to each other, leaving the user unable to judge
whether a given melody was at all funky. This user (and,
later on, another informal tester) remarked that there did
not seem to be any “melodicness” in the note patterns, that
the rhythms were too unpredictable, and that there were
surprisingly large intervallic jumps. These results
prompted the design of Generator 2.

Subsequent Evaluation
Generator 2 was used in a subsequent evaluation with four
people. In this evaluation, hardware malfunctions
prevented users from successfully using the piano
keyboard to write custom melodies during the tests. Thus,
users were limited to selecting system-generated melodies
to serve as “source melodies” to transform. All users
followed the testing procedure as described above.

All users had difficulty classifying melodies as “funky,”
saying that the melodies still sounded too “random” to
accurately judge. However, all users were able to
distinguish between melodies that they liked and disliked,
which was not the case with users who tested Generator 1.
Overall, users found the interface easy to use after a brief
tutorial, but two commented that they would have had
difficulty knowing what to do without some initial
prompting. The two users with songwriting experience
spent much more time listening to the randomly generated
melodies, often listening to the same melodies multiple
times. One user trained a classifier on melodies he “liked”
and “disliked” and was able to create variations that he
claimed sometimes improved on the original melody.

Discussion

User Interactions
Users’ level of concentration when playing with the system
was strongly correlated with experience in writing music
rather than music theory knowledge or performance
experience. Users seemed bored by tagging training
examples, and all used the full allotted time for training.
Improvements to the tagging process are discussed later.

Random Melody Generator
Creating a “general-purpose” random melody generator
was one of the design challenges we faced. An ideal
generator would produce melodies of all types, so that for
any descriptor, positive training examples could potentially
be generated. Generator 1 enforced only the condition that,
on average, 80% of the notes in the melody should fit into
the most likely key. Unfortunately, most of the resulting
melodies had few perceivable patterns in their rhythmic or
melodic structure, sounding for the most part like random
keys being hit on a piano instead of a coherent melody.
 The users’ criticisms of the random melodies produced
by Generator 1 (that they were too rhythmically varied,
dissonant, and had large jumps) indicated that the
Generator 1 was not adhering strongly enough to
Tymoczko’s properties. In order to improve the quality of
the melodies without introducing too many arbitrary
limitations, our second melody generator only enforced
those of Tymoczko’s properties which Generator 1 had
“violated.” Most melodies in Western music have
subsegments with similar rhythmic patterns. Therefore,

when designing Generator 2, generating rhythms based on
variations of single-measure rhythms seemed justified.
Since users found Generator 1’s melodies too “atonal,” the
in-key percentage of Generator 2 was increased, with 90%
being chosen through listening and tweaking. “Flattening,”
as described for Generator 2, was a heuristic that was
implemented to more strongly enforce “Conjunct Melodic
Motion,” one of Tymoczko’s properties of tonal music
stating that melodies generally move in steps of small
intervals. The interval of a fifth was arbitrarily chosen
because it is fairly common and relatively large interval.

Machine Learning and User Interaction
During the initial design phase, we realized that the
interface design would have a substantial effect on the
quality of the machine-learned classifier. If the interface
was clunky or confusing, it would take users longer to tag
or write training melodies. As a result, there would be
fewer tagged melodies, or those tagged could be of a lower
quality. Because of the low number of examples in the
training set, the difference in the training set caused by a
bad interface could be significant. Based on the results of
the evaluation, it seems reasonable to conclude that the
quality of randomly generated melodies far outweighs the
interface as the bottleneck for satisfactory training.

Future Work

Interface Improvements
By far the slowest task performed by users was the tagging
process, moreso for users with less musical experience.
One solution to speed up this process is to make the
tagging process optional. Users could be given a handful of
premade classifiers to use “out of the box.” These premade
classifiers could be “hand-built,” or they could be
generated from crowd-sourced tags. However, if users
wanted to customize the classifiers, they could add their
own training examples, weight their new training examples
relative to the original examples used to train the classifier,
and retrain the classifier using both old and new examples.

Tagging could also be replaced with pair-wise
comparisons between two melodies, where a user is given
two melodies and asked to judge which one is “more x.”
These pair-wise comparisons could be used to train a
ranking SVM (Joachims 2002). From an interaction
perspective, pair-wise comparisons may be a more
comfortable task for users than assigning positive or
negative tags to melodies, as users would only have to
consider two melodies instead of trying to remember an
“average” against which to compare.

Data collection
Pachet advocates for the collection of crowd-sourced
tagging data in building classifiers. Such data could be

very helpful both in creating premade classifiers and in
feature selection.

User tags could either be collected directly from users’
systems, or by farming the tagging to Amazon Mechanical
Turk (AMT). AMT could be used in a manner similar to
the work of Chaudhary and Koltun (2010), who collected
tags relevant to 3D modeling. Here, AMT users might be
given two melodies, and asked to rank one of them as more
“x” than the other, with “x” being any adjective descriptor
of their choosing. Sets of melodies tagged with synonyms
could be combined. The pairs for each descriptor set could
then be used to train a ranking SVM.
 Building up a large set of tagged or ranked examples
could also be useful in feature selection. With a set of
baseline data, we could evaluate the effectiveness of a
wider set of music analysis features with respect to their
relevance in classifying melodies according to descriptors.

Random Melody Generation
Rather than relying on a random melody generator to
produce melodies for the user to tag, we could start with a
large set of pre-made, “satisfactory” melodies—ones that
have been determined (by some criteria) to be “melodic”
enough for a general user to work with. Once a user starts
tagging these melodies to train a concept classifier, the
system could take an active learning approach, prompting
the user to tag the pre-made melodies that are likely to be
most useful in improving the classifier.

Currently, we are researching new random generation
approaches that allow users different modes of control over
the melodic or rhythmic structure. For example, given a
user-provided rhythm and a set of notes, melodies could be
produced using only those notes and similar rhythms. This
approach could support production of more appropriately
structured melodies without sacrificing generality. Current
challenges include determining the choice of structural
elements and the design of an effective user interface.

Conclusion
We have described a new system that builds on Pachet’s
Description-Based Design. Our system attempts to
combine musical intelligence with a higher degree of end-
user customizability. An evaluation of our system has
identified a few critical avenues for improvement. First, the
end-user tagging process can be arduous and unpleasant.
Second, the creation of a good general-purpose random
melody generator—capable of generating melodies that are
both diverse enough and “melodic” enough to serve as
appropriate positive or negative examples of arbitrary
descriptors—remains challenging. Our current and future
work aims to address these challenges through the use of
crowd-sourced data collection and new mechanisms for
user guidance of melody generation algorithms.

References
Ariza, C., and Cuthbert, M. 2000. Music21: A Toolkit for
Computer-Aided Musicology and Symbolic Music Data. Proc.
ISMIR.
Csikszentmihalyi, M. 1990. Flow: The Psychology of Optimal
Experience. New York: Harper and Row.
Chaudhuri, S. and Koltun, V. 2010. Data-driven Suggestions for
Creativity Support in 3D Modeling. ACM Trans. Graph. 29(6),
Article 183 (December 2010).
Cope, D. 1996. Experiments in Musical Intelligence. Madison:
A-R Editions.
Freund, Y., and Schapire, R. 1999. A Short Introduction to
Boosting. Journal of Japanese Society for Artificial Intelligence
14(5): 771–780.
Joachims, T. 2002. Optimizing Search Engines Using
Clickthrough Data. Proc. ACM Conference on Knowledge
Discovery and Data Mining.

Levenshtein, V. I. 1965. Binary Codes Capable of Correcting
Deletions, Insertions, and Reversals. Cybernetics and Control
Theory 10(8): 707–710.
Pachet. F. 2003. The Continuator: Musical Interaction with
Style. Journal of New Music Research 32(3): 333–341.
Pachet, Francois. 2009. Description-Based Design of Melodies.
Computer Music Journal 33(4): 56–68.
Post, O., and Toussaint, G. 2011. The Edit Distance as a Measure
of Perceived Rhythmic Similarity. Empirical Musicology Review
6(3): 164–179.
Tymoczko, D. 2011. A Geometry of Music: Harmony and
Counterpoint in the Extended Common Practice. Oxford: Oxford
University Press.
Witten, I., and Frank, E. 2005. Data Mining: Practical Machine
Learning Tools and Techniques. San Francisco: Morgan
Kaufmann Publishers.

