
Collaborative Coding with Music: Two Case Studies with
EarSketch

Avneesh Sarwate
Georgia Tech Center for Music

Technology
Atlanta, Georgia

avneesh@gatech.edu

Takahiko Tsuchiya
Georgia Tech Center for Music

Technology
Atlanta, Georgia

takahikio@gatech.edu

Jason Freeman
Georgia Tech Center for Music

Technology
Atlanta, Georgia

jason.freeman@gatech.edu

ABSTRACT
This paper describes the motivation, design, and implementation of
new features in EarSketch that enable the collaborative creation of
algorithmic music. EarSketch is a web-based Digital Audio
Workstation (DAW), designed primarily for educational contexts,
in which users author Python or JavaScript code to
programmatically create music within a multi-track paradigm. In
this paper, we describe these new collaborative features in
EarSketch and discuss their potential for use in both educational
and music performance contexts.

1. INTRODUCTION
By integrating features to support multi-user interaction across a
range of collaborative paradigms, systems for musical coding can
facilitate new types of creativity, expression, and communication
in both educational and performance contexts [2]. While tools for
collaborative coding — which range from version control systems
such as git and SVN to real-time systems such as FirePad and
CodeBunk — collaborative coding systems designed specifically
for music are still an emerging area of research.

Figure 1: The EarSketch Interface
EarSketch (Figure 1) engages a diverse population of students in
introductory computer science by teaching coding in the context of
algorithmic composition [9]. It consists of a web-based
programming environment, digital audio workstation, curriculum,
and audio loop library that enables students to write Python or
JavaScript code to algorithmically create music in popular genres.
EarSketch students write code to creatively manipulate musical
samples while learning computing fundamentals such as loops,
lists, and functions. The platform, currently implemented as a web-

based application using Web Audio API, has been used by over
220,000 users to date.

In recent years, students and teachers have increasingly requested
new features in the platform to support collaborating on EarSketch
projects and sharing those projects. Since the launch of the new AP
Computer Science Principles course in the United States in 2016
[1] — a course to which the EarSketch curriculum is closely aligned
— collaboration has become increasingly important as one of six
computational thinking practices highlighted in the course. The
EarSketch curriculum includes modules which introduce students
to key concepts in collaboration and peer critique, such as Liz
Lerman’s Critical Response Process [8], then ask them to
collaborate on a project, and finally challenge them to reflect on
how they collaborated.

This paper focuses specifically on the new collaboration features in
the EarSketch web-based platform itself that we have developed to
support the growing focus on collaboration and sharing that
students, teachers, and new curricular frameworks have demanded.
After reviewing core concepts in computer-supported cooperative
work, collaborative coding, and live coding, this paper focuses on
the design and implementation of the new collaboration features in
EarSketch. It also explains the applications of these collaborative
paradigms not only in educational settings but also in ensemble
live-coding performance contexts (such as laptop orchestras).
Technical challenges and solutions in the implementation of these
collaborative features are also reviewed in the broader context of
real-time audio systems using Web Audio API.

1.1 Computer Supported Cooperative Work
(CSCW)
Collaborative coding in the creative world has taken on many
flavors, and a useful framework for discussing collaborative music
systems generally is presented by Barbosa [2]. Barbosa’s
framework, which closely follows more general ones established in
the CSCW community, defines collaborative contexts across two
axes: location (collaborators can be either co-located or remote),
and time synchronization (e.g. “synchronous” - actively working
together in real time, or “asynchronous” - sharing artifacts and
working at different times). A system such as Splice (a cloud based
tool for sharing DAW project versions) would be an example of a
remote/asynchronous collaboration system, while an instance of
co-located/synchronous musical collaboration would be a duo
performing together on the same set of DJ decks.

1.2 Collaborative Coding
There currently is a diverse ecosystem of collaborative coding
tools, both musical and otherwise. As mentioned above, version
control systems such as Git or SVN could be considered the most
popular collaborative coding tools, allowing up to thousands of
people to contribute code to the same project. Another format of
popular collaborative coding tools is the “notebook”, as
popularized by Mathematica and the Jupyter project [6]. The
sharing of notebooks allows for a potentially faster (though still
non-realtime) form of collaboration by sharing smaller, more self-
contained chunks of code whose results are displayed inline with
the code itself. There are also a variety of real-time collaborative
coding tools - editors such as Firepad and CodeBunk that allow
remote collaborators to write and compile code in real-time right in
the browser.

Real-time code collaboration is an approach also adopted by many
musical tools. In fact, there are many tools that support the practice
of “live coding”, that is, creating live music and/or graphics by
writing code in real-time in front of an audience [3]. LOLC (Figure
2), a combination chat and coding environment [7], lets several co-
located performers on the same LAN perform music by sharing
snippets of code into a communal chat room.

Figure 2: The LOLC interface
Another LAN based collaborative system is Troop [5]. Troop is a
collaborative text editor where only one of the user is a “server”
who renders the final audio. Troop supports the musical live-coding
languages TidalCycles (Haskell) [12], FoxDot (Python) [4], and
SuperCollider [10], and can be configured to work with any
language that supports REPL style execution. Thus, users can
collaboratively build a document in Troop, but only execute certain
lines at a time. Estuary (Figure 3), a web based environment,
allows remote performers to collaborate on a musical performance
by writing code in TidalCycles, a Haskell based music library [14].
In Estuary, each performer is given their own editing window, but
performers can break convention and edit the code in another
performer’s window. All audio from each space is rendered locally
for each performer, and not necessarily synchronized between
performers. Gibber is another live-coding environment that allows
for collaborative editing [15], implementing a similar “one space
per user” pattern to Estuary.

Figure 3: The Estuary interface

2. PRIOR WORK WITH EARSKETCH
2.1 Sharing
Earlier versions of EarSketch supported user project sharing but not
user collaboration. Users could share projects with others via a
permalink URL, directly with other EarSketch users, or via
SoundCloud (in which case the source code would be posted in the
track’s description field). When a shared project was opened in
EarSketch, it was read-only: users could see the code and the multi-
track DAW render, but the only way they could edit the script was
to create a duplicate copy as a new project.

This sharing functionality supported two primary purposes. First,
students shared projects with their teacher so they could be graded,
typically by pasting a permalink URL into a learning management
system (like Google Classroom or Canvas) or by sharing the project
directly with the teacher’s EarSketch account. Second, students
shared projects with friends and family, typically via the permalink,
SoundCloud, or by simply exporting their project as an MP3. (Our
research has shown a close correlation between students’ interest in
sharing their projects and their intention to persist in computing, as
reported in [11]).

These sharing tools, however, did little to support student
collaboration, because sharing was always unidirectional: one user
could share a project with another user, but there was no way for
edits to sync back to the original author’s account. For example, we
often observed a pair of students working side by side together on
an EarSketch project, using two adjacent computers in a lab. They
would delegate different functions for each student to write and
then work separately on the two computers. When they tried to
integrate their work, they inevitably ran into trouble. One student
would share their script with the other student, who would then
perform the integration work. But the first student had no way to
access or edit the combined script unless it was shared back to them.
Inevitably, versions would get out of sync and students would be
unable to find the right code from one day to the next.

2.2 Live Coding
EarSketch was originally designed for batch-style execution: users
would write their code and then press a “run” button to render the
code in visual (DAW tracks) and audio form. EarSketch was later
extended to support a live coding model as well [18]: the code could
be re-run during playback and the DAW tracks and audio would
update with minimal interruption to playback. But this live-coding
mode was not in any way collaborative: it was useful for teachers
modeling coding practices in front of a class and for students
experimenting with iterative modifications to their code and music,
but lacked features such as time synchronization to make it useful
in a group performance context.

In the following sections we outline two use cases for new
collaboration features in EarSketch — group class projects and
large-ensemble live-coding performance — and discuss the design,

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2018, September 19–21, 2018, Berlin, Germany.
© 2018 Copyright held by the owner/author(s).

implementation, and implications of the features to support these
settings in detail.

3. USE CASE #1: GROUP PROJECTS IN
CLASSES
3.1 Context
To support collaborative work on student projects, we added
features to EarSketch to support multiple boxes of the CSCW
matrix and to move beyond unidirectional, read-only script sharing.
In addition to script sharing, users can now grant edit access to other
EarSketch users, and those scripts can then be edited synchronously
or asynchronously by any user with edit access. The real-time
collaborative text editor includes standard features, such as
highlighting which users are currently editing the script and
showing the cursor position of each active user.
We encourage the use of this feature in classrooms in the form of a
"jukebox challenge." In this activity, a small group of students are
asked to create short algorithmic pieces and later integrate them
into a jukebox script that accepts a user input or uses random value
for song selection. The integration process involves the peer
reviewing of songs, adapting each other's functions, and resolving
potential name conflicts. Shared editing eases the merging of
scripts in this collaborative process, and real-time visual feedback
in the script editor facilitates greater interactivity in synchronous
peer-reviewing processes.

3.2 Design and Implementation
The new script-sharing mode, "Let Others Edit", enables
synchronous and asynchronous Google-Docs-style collaborative
editing of an EarSketch script.

Figure 4: The collaboration invitation interface
By inviting a user, it turns a regular script (tab) to a shared
workspace with multiple authors. Like Google Docs, this mode
employs the operational-transform (OT) algorithm [17] via
websockets data exchange. OT, in essence, synchronizes multiple
clients' local text edits to the server version by recording and
adjusting individual edit operations when they are transmitted out
of order (i.e., concurrently) by the clients.

This generic feature was an essential baseline technology to
facilitate synchronous peer learning and exploration with
continuity and granularity, enabling all four of the collaborative
configurations discussed above (i.e., the cross section of co-located
vs remote, and synchronous vs asynchronous). However, it has also
highlighted new design challenges. For example, there is a need for
a new overlay UI that would enable a teacher or a team "navigator"
to moderate and guide the student learning and creative work. Our
previous study examined generic communication tools (e.g., chat
room and hashtag-typed messaging) as well as more integrated UI
solutions such as a turn-taking UI (though it is a challenge to create
a fluid workflow with this), inline indicators for the new user edits

(while keeping the syntax highlighting), and a code-block and
snippet management UI [16].

Figure 5: The EarSketch Shared Editing interface

3.3 Applications
3.3.1 Co-located/Synchronous
In a classroom setting, where students are co-located and working
together in real-time, EarSketch can serve as a tool for making
lecture style lessons more interactive. During a lesson where a
teacher is presenting a programming concept with code examples,
rather than showing coding on slides or on a non-interactive script,
the teacher could share a single script with the entire class in a
single collaboration session, as well as projecting it onto the screen.
This would allow for interactivity in several ways. The instructor
could ask students to implement small tasks or functions
(analogous to calling a student “up to the chalkboard” to solve
problems). This would allow instructors to organically show
different problem solving strategies and pitfalls as they arise [18].
Also, students could leave comments in the code where they have
questions, allowing the teacher to note problem points in the lesson
without necessarily disrupting it. On a more mundane level, screen
sharing can help students to see the code a teacher is typing by
mirroring it on their own computer screens: in many secondary
schools, computer labs have awkward physical layouts and
projection screens are quite small, making it hard for many students
to see a projected screen even with enlarged type.
The live-collaboration feature can also ease the process of pair-
programming in the classroom. Providing each student with a real-
time collaborative editor can enable students to swap between
“navigator” and “driver” roles more fluidly, especially if there are
more than two students working together.

3.3.2 Remote/Synchronous
The collaborative editor also allows students to pair or group
program remotely. When combined with an audio or video chat, the
ability to swap between “driver” (the person coding) and
“navigator” (the person watching, making suggestions and
corrections) and speak with collaborators in real-time can replicate
many facets of the in person experience. The ability to collaborate
in real-time outside the classroom greatly expands the potential for
peer-learning and development of collaboration skills.
The collaborative editor can also be used to enable remote teaching
assistant (TA) sessions. Similar to the classroom use-case, an
instructor could either present or answer questions about a piece of

code in an interactive setting in real time, with students joining the
TA session both by accessing the script and entering a conference
call.

3.3.3 Remote/Asynchronous
For collaborative scripts, any user can edit the script at any time.
This can allow students working on group projects to work
separately on a single document without having to deal with the
complexities of a version control system. Also, users editing a
collaborative script will be notified when a new user opens that
script, thus allowing spontaneous real-time collaboration to occur.
The owner of a collaborative script also has access to the version
history of the script (a snapshot that is taken whenever the script is
either run or saved), allowing them to roll back the contributions of
a collaborator if they break the script.

4. USE CASE #2: LARGE ENSEMBLE
LIVE CODING
4.1 Context
A second major collaboration feature we implemented was time-
sync, which coordinated the playback of multiple EarSketch
instances such that, for all scripts of the same tempo, the start of a
measure will align to a beat on a common metronome. This feature
was implemented with the goal of enabling large ensemble live-
coding performance. Previous research with EarSketch had
explored collaborative performance using the shared editor [18],
but due to the lack of time synchronization between performers,
only a single performer was tasked with playing the “master” audio.
By allowing individual performers to play time-synchronized
audio, we hoped to enable a co-located, synchronous collaborative
environment where performers had a greater degree of
independence and could collaborate more freely.

4.2 Design and Implementation
For synchronous real-time teamwork, we have implemented a quasi
shared-clock system for multiple clients. By turning on the "Play
Together" feature, and by using any ES script set to the same tempo
(BPM), co-located clients can quickly synchronize their playback
to time-quantized musical measures. This is achieved with the
clock-synchronization algorithm found in the network time
protocol (NTP) [13], that

!"#$"#%&'"()*++!") = ()! −)/0 − ()! −)/1))/2

where tc1 denotes the timestamp by the client upon querying, ts is
the server timestamp at the query response, and tc2 is the client's
timestamp upon receiving the server response. By repeating this
query (e.g., 30 times in our implementation) and taking the median,
we estimate the stable time lag between the client and server with
the assumed symmetric call-and-response communication lag.
From this time offset, each client estimates the current server time,
which is used as the basis for scheduling the playback at a timing
quantized by the tempo and measure.
This "time sync" option deliberately does not automatically align
the song locations and forms (though this is entirely possible by
manually interacting with the DAW), in order to introduce several
new performance / peer workflows. Particularly, co-located
musical collaboration can now be split up into multiple ES scripts

1 https://www.html5rocks.com/en/tutorials/audio/scheduling

as opposed to the single shared script editing, and it is possible to
combine the musical results in multiple ways, as discussed in the
use-cases section below.

EarSketch provides a uniquely DAW-oriented programming
environment. This brings opportunities in a loop-based as well as
visualization-assisted live-coding performance [18].However, the
DAW interface had also been a technical bottleneck for precise
audio playback with the complexity of DAW operations and the
limitations in the web-audio implementations in various browsers.
Typically, EarSketch has to support the in-time (re)construction of
a rather massive web-audio graph (easily up to hundreds of
BufferSourceNodes and audio-effect nodes) while enabling various
real-time user interactions, including:

• User operations on DAW, such as solo/mute, toggling effects,
moving the play cursor, creating looped sections, and toggling
a metronome

• Rendering recompiled scripts with new audio contents

• Toggling the time-sync option (new)

Previously, a solo live coder in EarSketch had to take these
expensive operations into account as they may cause a gradual
timing drift from the initial timing. In order to create a robust
synchronization with the shared clock, it was essential to optimize
the real-time rendering and playback engine. Here, we summarize
the key strategies for better rendering and playback performance:

1) Tracking the AudioContext.currentTime for the past and future
events: In EarSketch, a large number of audio clips across multiple
tracks are scheduled to play (and stop) in sync according to the
chosen starting position and loop / clock-sync configurations.
While BufferSourceNode.start ensures precise playback timing, the
scheduling process itself is a massive for-loop that needs to be
completed sufficiently in advance of the actual playback.
Simultaneously, we have to allow sudden changes and
cancellations of the schedules by user actions. Taking a similar
approach to Wilson's scheduling technique1 we incorporate a
window.setTimeout callback, which can be freely canceled as
opposed to AudioNode.onended in some browsers, to calculate the
next playback time using the offset between the
AudioContext.currentTime and stored previous timestamps.
2) A queue-based rendering data management: EarSketch is a
batch-processing system that (re)renders everything upon changes
in the code, which is synonymous with how web-audio graphs
behave. This creates a challenge in smoothly transitioning from the
old rendered audio to the new one upon recompilation, especially
with already scheduled play / stop times in each clip. Therefore, we
need to schedule the new rendering data while keeping the old clips
alive (until the newly-scheduled stop time). We manage these
schedules in the queued rendering data based on the timing of
musical measures, which proved to be more robust than
immediately and continuously swapping the data.
The time-synchronized playback facilitates co-located exploratory
collaborations where a live-coded composition task can be divided
among multiple users. In addition to the existing pair programming
mindset, it introduces a sound-oriented collaboration approach
where each user explores the combination of different audio clips
and edits different sections of a shared composition. Combined
with the "Let Others Edit" feature above, we see a unique

opportunity of dynamic learning and creative activities in the
classroom.

4.3 Applications
To gauge this potential, we piloted three impromptu "ensemble"
patterns with an ensemble of 12 live coders. Each ensemble
member had at least moderate experience with both EarSketch and
musical performance.

4.3.1 Single script free-for-all
The first performance mode explored was of multiple users editing
a single file. There were no set rules as to how the users should or
should not edit the file, and users could render and play the audio
at any time as they wished. All 12 machines played back the script
simultaneously and in time sync. Users reported paying attention to
their collaborators to make modifications in the music that would
fit well, but also reported having trouble following the code and the
music, because so much was changing with 12 simultaneous
editors. An interesting consequence of this pattern was that, though
there were only 12 users, there were sometimes more than 12 parts
playing. This is because if a user had played music generated by a
script and not re-run the script for a while, the script would have
changed and would no longer reflect the music being played on
other machines. Thus, users who had played the script more
recently would be playing a different set of tracks.

4.3.2 Single script with limitations
In this pattern, as in the previous, all users were still editing a single
script. However, this clip had a “template” song with 12 tracks (1
per user). The “rules” that were agreed upon were that a user would
only edit his or her own track, and the user would “solo” their track,
so that their computer only played audio of their own track. Users
reported having an easier time following the code, but surprisingly,
some said they had a harder time hearing the whole song - the large
room in which the jam was conducted made it hard to hear the audio
of all 12 computers at once to hear the “full” song. This was not an
issue when each user was playing the “full” song on their own
computer, effectively using it as a stage monitor.

4.3.3 Multi-file script for all
For the final pattern, we adopted a “multiple chat room” metaphor.
Three collaborative scripts were shared among all 12 users, each
containing their own separate music generating code. Users could
move freely between scripts, editing and playing whichever script
they chose. The goal was to create a hybrid of the previous two
patterns - allowing the users to modify any part of the music, but
also giving them a smaller, more manageable section of code in
order to minimize churn. Users reported that dividing the
collaborative environment into three scripts instead of one did not
significantly reduce the complexity from the single-script free-for-
all pattern.

5. DISCUSSION AND FUTURE WORK
Our informal study found that managing an improvisation session
of 12 live-coders was difficult musically, but relatively manageable
technically. For the most part, participants struggled to decide on
musical actions, rather than struggling to figure out how to execute
those actions with code. From a CS education standpoint, this is
promising. Our end goal is to create a single platform whose
context of use can fluidly switch between different modes of
collaboration. We hope to make a tool that can be used to both teach
programming concepts, and then allow expressive musical
performance that reinforces those same concepts. Our future work
is motivated by this inter-function fluidity.

5.1 Communication
We hope to improve strategies for communication and information
sharing between remote collaborators. One specific feature we
believe could improve communication is an in-EarSketch chat
feature. Beyond simple verbal communication, a chat would allow
collaborators to share snippets of code and make suggestions
without cluttering the script being worked on with comments, and
without having to swap back and forth between EarSketch and a
secondary page. The chat feature could also be used in
performance, allowing performers to share code without having to
edit a common script.

5.2 Compilation
In our pilot 12-musician experiment, shared scripts were often
challenging to use simply because they were so often in a syntax-
incomplete state. In other words, one musician would be ready to
run the code, but the code would not execute because another
musician was editing another section of code. In past studies, we
have avoided this problem by enforcing turn-taking [19], but this
can be overly restrictive to collaboration. Live-coded computer
music languages that support partial code execution, like
SuperCollider, offer a more flexible model to consider.

5.3 Collaboration Tracking
While teachers have demanded increased collaborative support in
EarSketch, they have simultaneously expressed concern about how
those features will make it easier for students to plagiarize the work
they submit in class. We plan to extend the existing version history
feature in EarSketch to highlight which users made each change in
a script, helping teachers to catch plagiarism, understand the
different contributions of students towards group projects, and
facilitate conversations about how students collaborated together
and how they might work more effectively.

6. CONCLUSION
We hope to deepen student interaction with EarSketch through
these new features and the activity types they enable. By providing
a single tool that can be used both in educational and music
performance contexts, both individually and collaboratively, we
believe that the EarSketch environment can reinforce lessons
learned in the class room and inspire curiosity outside of it.

7. ACKNOWLEDGEMENTS
EarSketch receives funding from the National Science Foundation
(CNS #1138469, DRL #1417835, DUE #1504293, DRL #1612644,
and IIP #1741045), the Scott Hudgens Family Foundation, the
Arthur M. Blank Family Foundation, the Ruth L. Seigel Family
Foundation, and the Google Inc. Fund of Tides Foundation.
EarSketch is available online at earsketch.gatech.edu.

Any opinions, findings, and conclusions or recommendations
expressed in these materials are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation or
other funding bodies.

8. REFERENCES
[1] Astrachan, O. et al. 2013. CS Principles: Development
and Evolution of a Course and a Community. Proceeding of the
44th ACM Technical Symposium on Computer Science Education
(New York, NY, USA, 2013), 635–636.

[2] Barbosa, A. 2006. Displaced Soundscapes: CSCW for
Music Applications. Universitat Pompeu Fabra.

[3] Collins, N. et al. 2003. Live Coding in Laptop
Performance. Organised Sound. 8, 3 (Dec. 2003), 321–330.
DOI:https://doi.org/10.1017/S135577180300030X.

[4] Kirkbride, R. 2016. FoxDot: Live coding with python
and supercollider. (Hamilton, Ontario, Canada, Oct. 2016).

[5] Kirkbride, R. 2017. Troop: A Collaborative Tool for Live
Coding. Proceedings of the 14th Sound and Music Computing
Conference (2017), 104–9.

[6] Kluyver, T. et al. 2016. Jupyter Notebooks - A Publishing
Format for Reproducible Computational Workflows. ELPUB
(2016), 87–90.

[7] Lee, S.W. et al. 2011. Collaborative musical
improvisation in a laptop ensemble with LOLC. (Atlanta, Georgia,
USA, Nov. 2011), 361–362.

[8] Lerman, L. and Borstel, J. 2003. Critical Response
Process. Takoma Park, MD: Dance Exchange. (2003).

[9] Mahadevan, A. et al. 2015. EarSketch: Teaching
computational music remixing in an online Web Audio based
learning environment. Web Audio Conference (2015).

[10] McCartney, J. 2002. Rethinking the Computer Music
Language: SuperCollider. Computer Music Journal. 26, 4 (Dec.
2002), 61–68. DOI:https://doi.org/10.1162/014892602320991383.

[11] McKiln, T. et al. 2018. Authenticity and Personal
Creativity: How EarSketch Affects Student Persistence. (Feb.
2018), 987–992.

[12] McLean, A. and Wiggins, G. 2010. Tidal – Pattern
Language for the Live Coding of Music. Proceedings of the 7th
sound and music computing conference (2010).

[13] Mills, D.L. 1991. Internet Time Synchronization: The
Network Time Protocol. IEEE Transactions on Communications.
39, 10 (Oct. 1991), 1482–1493.
DOI:https://doi.org/10.1109/26.103043.

[14] Ogborn, D. et al. 2017. Estuary: Browser-based
Collaborative Projectional Live Coding of Musical Patterns.
International Conference on Live Coding (ICLC) 2017 (2017).

[15] Roberts, C. and Kuchera-Morin, J. 2012. Gibber: Live
Coding Audio in the Browser. ICMC (2012).

[16] Rohrhuber, J. and de Campo, A. 2009. Improvising
Formalisation — Conversational Programming and Live Coding.
(2009).

[17] Sun, C. and Ellis, C. 1998. Operational Transformation
in Real-Time Group Editors: Issues, Algorithms, and
Achievements. Proceedings of the 1998 ACM conference on
Computer supported cooperative work (1998), 59–68.
[18] Xambó, A. et al. 2016. Challenges and New Directions
for Collaborative Live Coding in the Classroom. International
Conference of Live Interfaces (ICLI 2016). Brighton, UK (2016).
[19] Xambó, A. et al. 2018. Turn-taking and Online Chatting
in Remote and Co-located Collaborative Music Live Coding.
Journal of the Audio Engineering Society. 66, 4 (2018).

