
Calcification and Hybrid Live-Coding

ABSTRACT
This paper presents a design framework for building music
performance systems that are both highly responsive and
easily customizable during performance. We focus on
systems that incorporate live-coding, the activity of writing
code during the performance itself. We discuss the merits
and weakness of live-coding in isolation and introduce the
idea of “hybrid live-coding.” We then introduce the ideas of
“liveness” and “malleability” as they relate to musical
interfaces, and then describe “calcification” - our
framework for building interfaces that are both live and
malleable. Next, after presenting case studies of the Tidal
live-coding library and two original live-coding libraries,
we discuss hybrid live-coding environments and how
calcification can help performers design custom interfaces
in these environments. We conclude by positioning this
paper as the start of a longer program of research into
malleable, code-utilizing interfaces for musical
performance.
Author Keywords
Music Performance Interfaces; Domain Specific
Languages; Live-Coding; Human Computer Interaction;
ACM Classification Keywords
User Interfaces; Human factors; Sound and Music
Computing
INTRODUCTION
Live-coding [1] allows musical performers to generate,
transform, and arrange musical material however they
desire. This offers an incredible amount of freedom to
performers. However, the lack of an existing musical
structure can be daunting for novices. If novices cannot find
useful software libraries as a starting point, they are forced
to build up all of their organizational tools for performing
and composing from scratch.

Furthermore, “pure” live coding, (i.e. live coding without
the use of any interface than the code itself) has some
performance limitations when compared with performance
via hardware controllers. Live-coding lacks the same
immediacy of expression as is possible with a physical
instrument or controller - when performing, improvising a
melody on a guitar is much faster than typing one out into a
text editor. Also, code is not always the most efficient
interface for inputting information into a system. For
example, it is typically much faster to play and record a
melody on a digital keyboard than to type it in some ASCII
representation.

Hybrid live-coding systems (i.e. live-coding systems that
incorporate other interfaces) can help address some of these
problems. For example, a physical bank of sliders could
bring more spontaneity to audio performance by letting a
performer play freely with audio-filter values, while a step
sequencer UI could speed up the process of annotating
complicated arpeggio patterns. However, though the music
interface literature documents instances of hybrid live
coding environments [3, 7, 12], these works provide little
information to help performers design their own interfaces
in these environments. In general, there is a dearth of
research into interface-agnostic best practices for designing
custom interfaces in hybrid live-coding environment.

To address this gap, we present the notion of calcification, a
simple framework for designing both live coding libraries
and hybrid live-coding systems. This paper will present
some libraries built with this framework in mind and will
discuss how this framework can help integrate various types
of physical interfaces into a hybrid live-coding system. We
hope to use this work as a starting point for deeper research
into hybrid live-coding environments.
CONCEPTUAL BACKGROUND
The design framework presented here incorporates two
existing concepts in interaction design literature: liveness
and malleability. Liveness refers to how quickly a system
responds to user input. Steven Tanimoto investigated the
concept with respect to programming environments [10].
Nash et al further developed this concept to analyze musical
notation systems [9]. In particular, Nash characterized
different levels of liveness and provided examples of such
systems in the Table 1, reproduced from [9].

Avneesh Sarwate
Independent

New York City, USA
avneeshsarwate@gmail.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
AM '16, October 04-06, 2016, Norrköping, Sweden
© 2016 ACM. ISBN 978-1-4503-4822-5/16/10$15.00
DOI: http://dx.doi.org/10.1145/2986416.2986449

A user interface is said to be “malleable ” when it can be 1

modified to better fit a user’s particular context of use [2].
For example, the iPhone home screen exhibits malleability
by letting users rearrange application icons into different
positions and folders, allowing faster access to more
frequently used applications. Dyck, et al in particular,
highlights the importance of malleability when designing
efficiently usable interfaces for real-time tasks:

“[Video] Game interfaces are plastic [i.e.
malleable]; they are designed to be changed [e.g.
changing what button is used to shoot in a
shooting game]. Gamers have learned that
different interface configurations can greatly
affect performance in different game situations,
and that no single configuration can be
appropriate for all tasks. This is equally true of
complex conventional applications like Word or
Photoshop; the difference is that gamers see the
extra effort required for a suboptimal interface
configuration as the difference between victory
and defeat, or life and death.” [2]

Interface-efficiency can thus be the difference between
success and failure—and this notion also applies to musical
improvisation, where starting a loop a split second late can
sound out-of-sync and disruptive. Therefore, it is important
that malleable music interfaces can be reconfigured into an
optimally live form.
CALCIFICATION
It is with liveness and malleability in mind that we
introduce the novel concept of calcification: the act of
“freezing” a malleable interface in a particular, static
configuration to use it in a more “live” way. The process of
applying calcification to a system involves 3 main
questions:

1. What parts of this system are malleable if we do not
consider time constraints?

2. What well-defined instance or behavior of this system
do we want to access under time constraints, and (if
relevant), what information can be used to
parameterize this instance or behavior?

3. How can we create an efficient way to store and access
the different instances or behaviors?

“Calcification” produces a “calcified component” - which
we define to be an interface whose mapping or
representation is fixed during performance.

A straightforward example of calcification in a live coding
environment is the creation of a library of functions for
generating a random melody. There are many different
algorithms one could use to create a random melody (the
“well defined behavior” from question two), and the library
API serves as a fixed interface for storing and accessing
those algorithms. The arguments to the function calls are
the parameters for the behavior. The API of function calls,
unlike the code used to define the functions, is efficient
enough to use in performance. Even in dynamic
environments where the code defining the API can be
modified at performance time, the API serves as a
conceptual differentiator between “surface” and “deep”
changes to the performance environment. Proper
calcification is important because it takes functionality that
would otherwise be level-2 live and wraps it in an interface
that is level-3 live, thus making it usable during
performance. Tidal, a live-coding library in Haskell,
calcifies code via a domain specific language (DSL) - a
particularly powerful approach discussed in the section
“CASE STUDY: TIDAL”.

 What we call malleability is sometimes referred to as “plasticity.” We use the term malleability because 1

the usage of the term plasticity can sometimes refer to a similar, but slightly different concept, as
described in [11].

Table 1. Levels of liveness in programming and music (from [9])

Another powerful strategy for creating malleable, yet very
“live” interfaces is to integrate various types of non-code
interfaces, such as digital keyboards, DJ hardware, or even
traditional GUIs, into a live coding system. The idea of
calcification can help guide the design of APIs that can
integrate with external interfaces. The section “HYBRID
LIVE CODING AND CALCIFICATION” describes the
advantages of hybrid live-coding environments and
discusses the challenges of calcifying them.
CASE STUDY: TIDAL
Alex McLean’s Tidal project [8] presents an interesting
example of the calcification of code. It provides a domain
specific language (DSL) for defining rhythmic patterns and
a library of Haskell functions for manipulating them. The
Tidal DSL is simply a Haskell string that is parsed into an
internal data structure representing a rhythm. For example,
the single line program:

d1 $ sound “bd sn sn”

would play a loop comprised of a bass drum hit on every
first beat and snare hits on every 2nd and 3rd beat. sound
is the Haskell function that parses the string “bd sn sn”
into the internal rhythm representation, and d1 is the
function that “plays” the rhythm. The Tidal DSL can be
analyzed through the three questions of the calcification
process.The “full system” in general is the Haskell
language, and given no time constraints, virtually all parts
of the system are malleable and any structure is eventually
expressible. From this total system, the behaviors to be
calcified are the expression of simple rhythms and their
combination into poly-rhythms. In creating an interface for
expressing these behaviors, the Tidal syntax is a much more
efficient textual representation of rhythmic patterns than
any representation possible using Haskell syntax.

Tidal also presents a library of functions for transforming
rhythms. For example, in the single line program:

d1 $ rev sound “bd sn sn”

The function rev reverses the pattern object created by
sound “bd sn sn”. The pattern transformation API,
which is implemented as a set of Haskell functions, presents
the more malleable part of the interface. Functions can be
combined in various ways and new functions can be written
on the fly in a bundled Emacs interpreter.

Though Tidal’s initial setup is configured to run as a drum-
machine, its core library is intentionally designed to let
users send real-time OSC messages to any application,
making Tidal a generic DSL for rhythmic patterns.

Tidal utilizes two particular design strategies that can be
used in other contexts. Firstly, its creation of a DSL
provides a powerful method for defining complex objects,
and is much more efficient than a conventional API.
Secondly, its design decouples the core structure (in this
case, the rhythmic pattern generator) from instances of its
use (i.e a drum machine). Though Tidal comes pre-
configured to sequence drums, it can easily be used to
sequence melodies, lighting, and more.

NEW LIBRARIES
The following libraries attempt to follow Tidal’s example
and create generic, structure-defining DSLs which are
embedded within an environment that lets users “plug in”
the specific behavior around those structures. In particular,
we aimed to create Python libraries that could assist in the
“high level” organization of a musical performance.
Trees
We wanted to build an efficient interface for working with
tree structures, and we used the calcification framework to
help build a DSL for the task.
Design Process
The specific use-case for the tool would be to store
variations of melodies - a node would contain a particular
melody, and its children would contain algorithmically
generated variations on that melody. However, we also
wanted the interface to be more generally useful for
working with trees. We knew we wanted our environment
to be the Python programming language, and thus any types
of operations on trees were representable, given enough
time.

We determined that the core behaviors we wanted to calcify
were 1) traversing through the tree one node at a time (i.e
moving from a node to its parent, a child, or a sibling) and,
2) generating a child node from a parent node by creating a
variation on the parent node’s melody. We realized that, if
we viewed these two operations (traversing node to node
and creating a new child) as functions, the only information
they would require were 1) what the current position in the
tree is, and 2) a function that creates a variation on a
melody given a source melody. We also decided that, for
reasons related to the initial musical use-case, we would
want a tree where the children of a node are stored as a list
(where order matters) rather than as a set.

To create an efficient representation of these behaviors, we
decided to create a DSL where each of 5 functions (move to
parent, move to a child, move “forwards” in the sibling list
to a sibling, move “backwards” in the sibling list to a
sibling, create a new child) would represented by symbols.
We implemented a simple Node object in Python such that
calling node.execute(“symbols from tree
DSL”) would execute, in order, the functions specified by
the symbols in the DSL string.

Implementation
A tree is instantiated with an initial melody object
rootMel and some function transFunc that takes a
melody as an argument and returns a variation of it.

t = TreeBuilder(rootMel, transFunc)

t is now a tree object with a single node, and that node’s
value is the object rootMel. t.currentNode is the
pointer to the current position in the tree, and t.root is a
pointer to the root.

The language itself has has 5 core operators:

 \/! : creating a child for the current node. Each node has
a list of children, and this places the new node at the end of
the list. The value for that child is the output of
transFunc(t.currentNode.val)

^ : moves the the current node pointer to the parent of the
current node (but does nothing if the current node is the
root)

\/ : moves the current node the first of its children (but
does nothing if there are no children)

< : moves the current node to its previous sibling (rolls over
to the end of the list if the current node is the first sibling)

> : moves the current node to its next sibling (rolls over to
the start of the list if the current node is the last sibling)

Executing the line t.executue(“\/! ^ \/! ^ \/!
< \/! ^ \/!”) would create a tree with the structure
shown in figure 1, with the numbers signifying the order in
which the nodes are created:

!
Figure 1. The tree structure produced by  

t.executue(“\/! ^ \/! ^ \/! < \/! ^ \/!”)

Further operators include :

>! : creating a new sibling after the current node. The value
for that newly created node is the output of
transFunc(t.currentNode.val)

<! : creating a new sibling before the current node. The
value for that newly created node is the output of
transFunc(t.currentNode.val)

\/:n : moves down to the nth child (wraps around if n >
num children)

>:n and <:n : moves forwards/backwards n steps in the
sibling list (wraps around if end/start of list is reached)

(...)*n : repeats the sequence of symbols in the
parenthesis n times  
e.g. \/! (>! >! \/!)*2 becomes  
\/! >! >! \/! >! >! \/!

The code in figure 2 will produce the tree in figure 3 (this
example is intended to show the structure of the tree and
order of the nodes created. It does not show the intended
usage of node-values and transformation functions).

!
Figure 2. Example code for building a tree

!
Figure 3. Tree generated by code from Figure 2

Extensibility
Though the author’s intended use case for this library is to
track variations of melodies, the tree can track the variation
of any type of object, provided that users supply an
appropriate function to the constructor for creating
variations of the supplied object type.

Users need not use the variational aspect of the tree at all.
Calling the constructor with no arguments allows the user to
build and traverse a tree with empty values. Also, a node’s
val property is publicly accessible, allowing users to store
arbitrary values at any node in the tree.
State-transition networks
A second problem we wanted to tackle was creating an
efficient interface for describing event-based state-
transitions. A similar process of calcification led to the
following DSL. We determined that it would be most
efficient to model the state-transition network as a directed
graph, where states correspond to nodes and events
correspond to named edges. The language uses syntax
similar to DOT [6] for describing event transitions. The
line:

s1 --(e1)--> s2

Would indicate that an event of type e1 would trigger a
transition from state s1 to s2 (given that the system is in
state s1). Compound statements such as:

s1 --(e1)--> s2 --(e2)--> s3

would be equivalent to the two separate statements:

s1 --(e1)--> s2

s2 --(e2)--> s3

The network setup in figure 4 is visualized by the transition
graph in figure 5, with “event” names in parenthesis.

!

Figure 4. Example code for building a transition network

!
Figure 5. Topology of the transition network from Figure 4

An “event” can be triggered by sending an OSC message to
its address, which is “/” plus its string.

Each state corresponds to a function, which is called when
the state is entered. When constructing a transition network,
the state-function mapping can be passed into the
constructor as a Python dictionary (as shown by funcMap
in the code). Because Python supports a “callable” interface
for objects, users can even pass in classes so that the
“function” that executes for a state has “stateful
behavior” (i.e. has memory).

If no default state is set, the start state is the “from” node of
the first edge described. The network supports logic for
being in multiple states at once, and the “state-transition”
logic upon the occurrence of an event is analogous to that
of an NFA (Nondeterministic Finite Automaton). Users can
also explicitly set the desired state(s) of the network via a
class variable.

HYBRID LIVE CODING AND CALCIFICATION
Integrating instrument-like interfaces (ILIs) into a live-
coding system allows for both level-4 liveness and powerful
malleability. We define “instrument-like interfaces” to be
any interfaces that are physically actuated in real-time (e.g.,
analog instruments, digital keyboards, faders and sliders,
etc.). A simple yet powerful way to integrate ILIs and live-
coding is to record the actions taken on an ILI and make the
time-series of events available as data for manipulation via
live-coding. For example, a performer could play a melody
on a piano and record it into the live-coding system, and
then algorithmically manipulate the melody and replay it
using some predefined functions.

Live coding is especially powerful when combined with
digital ILIs, which are ILIs that send MIDI, OSC, or other
such digital messages. The performer can define arbitrary
handler functions for input events (MIDI, OSC, etc) from
the ILI during the performance itself and execute arbitrary
blocks of code with the push of a button. If the goal for
calcification in pure live-coding environments is to create a
level-3 live interfaces for a behavior, the goal for
calcification in hybrid live-coding environments with ILIs
is to create a level-4 live interfaces for a behavior.

This new goal presents new challenges. When trying to
calcify behaviors and structures in pure live-coding, the
parameters for those behaviors and structures are also
expressed in code. For example, when trying to create an
API, the arguments to those functions can be anything
expressible by code. When trying to calcify behaviors and
structures for level-4 liveness hybrid live coding systems,
the behaviors to be calcified are parametrized by both
level-3 live inputs (code, selections from a graphical menu,
etc.) and level-4 live inputs (events from an ILI). However,
the level-4 live inputs (for example, MIDI messages) will
often be much less expressive than code, and there are a
limited amount of physical inputs (sliders, keys, etc) on an
ILI, thus limiting the number of input parameters to work
with. The challenge in trying to calcify for level-4 liveness
is to create an interface that is as expressive as possible
with respect to its level-4 live inputs while being efficient
about the number of physical inputs used.

For example, in an environment consisting of MIDI
keyboard and a live-coding environment that allows live-
coding handlers for MIDI events, we want to calcify the
given behavior: given a chord progression that is playing in
the background, “autocorrect” the notes played on a
keyboard such that a user will never play a note that is out
of key with respect to the chords in the progression. In this
behavior, the level-4 live input is the note being played, and
the level-3 live input is the set chords played in the
progression. Since there are potentially several different
strategies for determining the correct note, we could say
that the function defining a particular strategy another
level-3 live input, to be determined by code in the definition
of the MIDI event handler. The user could even decide that
they want to be able to “hot swap” the autocorrect strategy
with the press of a button, thus making the choice of
autocorrect function a level-4 live parameter. However, the
cost is that there is now 1 less button available to map for
other uses.
FUTURE WORK
Effective calcification of a behavior is highly dependent on
the affordances [4] of the interface(s) used in a hybrid live-
coding system (an object’s affordances are the ways in
which it can be interacted with). Going forward, we wish to
analyze the affordances of various interfaces in order to find
common design patterns that can arise in the building of
live performance systems. In the long run, we wish to
develop a vocabulary for describing music performance
interfaces that is analogous to the Cognitive Dimensions of
Notations (CDN) [5]. The CDN is a set of terms, each of
which describes a relatively independent property, or
dimension, of notation systems. The definition of a set of
dimensions makes it easier to clearly describe the
advantages and disadvantages of a design decision - a
particular decision can be said to strengthen some
dimensions and weaken others. The definition of a
“Dimensions of Performance Systems” would be an
invaluable tool in making the calcification process more
rigorous - calcification could be formulated as a way to
move from one point in the dimension space to another.
REFERENCES
1. Collins, Nick, Alex McLean, Julian Rohrhuber, and

Adrian Ward. "Live coding in laptop performance."
Organised sound 8, no. 03 (2003): 321-330.

2. Dyck, Jeff, David Pinelle, Barry Brown, and Carl
Gutwin. "Learning from Games: HCI Design
Innovations in Entertainment Software." In Graphics
Interface, pp. 237-246. 2003.

3. Essl, Georg. UrMus-an environment for mobile
instrument design and performance. Ann Arbor, MI:
Michigan Publishing, University of Michigan Library,
2010.

4. Gibson, James J. The ecological approach to visual
perception: classic edition. Psychology Press, 2014.

5. Green, Thomas R. G., and Marian Petre. "Usability
analysis of visual programming environments: a

‘cognitive dimensions’ framework." Journal of Visual
Languages & Computing 7, no. 2 (1996): 131-174.

6. Koutsofios, Eleftherios, and Stephen North. Drawing
graphs with dot. Technical Report
910904-59113-08TM, AT&T Bell Laboratories,
Murray Hill, NJ, 1991.

7. Magnusson, Thor. "Improvising with the threnoscope:
integrating code, hardware, GUI, network, and graphic
scores." Proceedings of the New Interfaces for Musical
Expression Conference. Goldsmiths University, 2014.

8. McLean, Alex, and Geraint Wiggins. "Tidal–pattern
language for the live coding of music." Proceedings of
the 7th sound and music computing conference. 2010.

9. Nash, Chris, and Alan Blackwell. "Liveness and Flow
in Notation Use." In NIME. 2012.

10. Tanimoto, S. VIVA: A Visual Language for Image
Processing. In Journal of Visual Languages and
Computing. Academic Press. pp. 127-139, 1990.

11. Thevenin, David, and Joëlle Coutaz. "Adaptation and
plasticity of user interfaces." In Workshop on Adaptive
Design of Interactive Multimedia Presentations for
Mobile Users, pp. 7-10. 1999.

12. Wang, Ge, et al. "Yeah, ChucK it!⇒ dynamic,
controllable interface mapping."Proceedings of the
2005 conference on New interfaces for musical
expression. National University of Singapore, 2005.

