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ABSTRACT 
This paper presents a design framework for building music 
performance systems that are both highly responsive and 
easily customizable during performance. We focus on 
systems that incorporate live-coding, the activity of writing 
code during the performance itself. We discuss the merits 
and weakness of live-coding in isolation and introduce the 
idea of “hybrid live-coding.” We then introduce the ideas of 
“liveness” and “malleability” as they relate to musical 
interfaces, and then describe “calcification” - our 
framework for building interfaces that are both live and 
malleable. Next, after presenting case studies of the Tidal 
live-coding library and two original live-coding libraries, 
we discuss hybrid live-coding environments and how 
calcification can help performers design custom interfaces 
in these environments. We conclude by positioning this 
paper as the start of a longer program of research into 
malleable, code-utilizing interfaces for musical 
performance. 
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INTRODUCTION 
Live-coding [1] allows musical performers to generate, 
transform, and arrange musical material however they 
desire. This offers an incredible amount of freedom to 
performers. However, the lack of an existing musical 
structure can be daunting for novices. If novices cannot find 
useful software libraries as a starting point, they are forced 
to build up all of their organizational tools for performing 
and composing from scratch. 

Furthermore, “pure” live coding, (i.e. live coding without 
the use of any interface than the code itself) has some 
performance limitations when compared with performance 
via hardware controllers. Live-coding lacks the same 
immediacy of expression as is possible with a physical 
instrument or controller - when performing, improvising a 
melody on a guitar is much faster than typing one out into a 
text editor. Also, code is not always the most efficient 
interface for inputting information into a system. For 
example, it is typically much faster to play and record a 
melody on a digital keyboard than to type it in some ASCII 
representation.  

Hybrid live-coding systems (i.e. live-coding systems that 
incorporate other interfaces) can help address some of these 
problems. For example, a physical bank of sliders could 
bring more spontaneity to audio performance by letting a 
performer play freely with audio-filter values, while a step 
sequencer UI could speed up the process of annotating 
complicated arpeggio patterns. However, though the music 
interface literature documents instances of hybrid live 
coding environments [3, 7, 12], these works provide little 
information to help performers design their own interfaces 
in these environments. In general, there is a dearth of 
research into interface-agnostic best practices for designing 
custom interfaces in hybrid live-coding environment.  

To address this gap, we present the notion of calcification, a 
simple framework for designing both live coding libraries 
and hybrid live-coding systems. This paper will present 
some libraries built with this framework in mind and will 
discuss how this framework can help integrate various types 
of physical interfaces into a hybrid live-coding system. We 
hope to use this work as a starting point for deeper research 
into hybrid live-coding environments. 
CONCEPTUAL BACKGROUND 
The design framework presented here incorporates two 
existing concepts in interaction design literature: liveness 
and malleability. Liveness refers to how quickly a system 
responds to user input. Steven Tanimoto investigated the 
concept with respect to programming environments [10]. 
Nash et al further developed this concept to analyze musical 
notation systems [9]. In particular, Nash characterized 
different levels of liveness and provided examples of such 
systems in the Table 1, reproduced from [9]. 
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A user interface is said to be “malleable ” when it can be 1

modified to better fit a user’s particular context of use [2]. 
For example, the iPhone home screen exhibits malleability 
by letting users rearrange application icons into different 
positions and folders, allowing faster access to more 
frequently used applications. Dyck, et al in particular, 
highlights the importance of malleability when designing 
efficiently usable interfaces for real-time tasks:  

“[Video] Game interfaces are plastic [i.e. 
malleable]; they are designed to be changed [e.g. 
changing what button is used to shoot in a 
shooting game]. Gamers have learned that 
different interface configurations can greatly 
affect performance in different  game situations, 
and that no single configuration can be 
appropriate for all tasks. This is equally true of 
complex conventional applications like Word or 
Photoshop; the difference is that gamers see the 
extra effort required for a suboptimal interface 
configuration as the difference between victory 
and defeat, or life and death.” [2] 

Interface-efficiency can thus be the difference between 
success and failure—and this notion also applies to musical 
improvisation, where starting a loop a split second late can 
sound out-of-sync and disruptive. Therefore, it is important 
that malleable music interfaces can be reconfigured into an 
optimally live form.  
CALCIFICATION 
It is with liveness and malleability in mind that we 
introduce the novel concept of calcification: the act of 
“freezing” a malleable interface in a particular, static 
configuration to use it in a more “live” way. The process of 
applying calcification to a system involves 3 main 
questions: 

1. What parts of this system are malleable if we do  not 
consider time constraints? 

2. What well-defined instance or behavior of this system 
do we want to access under time constraints, and (if 
relevant), what information can be used to 
parameterize this instance or behavior? 

3. How can we create an efficient way to store and access 
the different instances or behaviors? 

“Calcification” produces a “calcified component” - which 
we define to be an interface whose mapping or 
representation is fixed during performance.   

A straightforward example of calcification in a live coding 
environment is the creation of a library of functions for 
generating a random melody. There are many different 
algorithms one could use to create a random melody (the 
“well defined behavior” from question two), and the library 
API serves as a fixed interface for storing and accessing 
those algorithms. The arguments to the function calls are 
the parameters for the behavior. The API of function calls, 
unlike the code used to define the functions, is efficient 
enough to use in performance. Even in dynamic 
environments where the code defining the API can be 
modified at performance time, the API serves as a 
conceptual differentiator between “surface” and “deep” 
changes to the performance environment. Proper 
calcification is important because it takes functionality that 
would otherwise be level-2 live and wraps it in an interface 
that is level-3 live, thus making it usable during 
performance. Tidal, a live-coding library in Haskell, 
calcifies code via a domain specific language (DSL) - a 
particularly powerful approach discussed in the section 
“CASE STUDY: TIDAL”. 

 What we call malleability is sometimes referred to as “plasticity.” We use the term malleability because 1

the usage of the term plasticity can sometimes refer to a similar, but slightly different concept, as 
described in [11].

Table 1.  Levels of liveness in programming and music (from [9])



Another powerful strategy for creating malleable, yet very 
“live” interfaces is to integrate various types of non-code 
interfaces, such as digital keyboards, DJ hardware, or even 
traditional GUIs, into a live coding system. The idea of 
calcification can help guide the design of APIs that can 
integrate with external interfaces.  The section “HYBRID 
LIVE CODING AND CALCIFICATION” describes the 
advantages of hybrid live-coding environments and 
discusses the challenges of calcifying them.  
CASE STUDY: TIDAL 
Alex McLean’s Tidal project [8] presents an interesting 
example of the calcification of code. It provides a domain 
specific language (DSL) for defining rhythmic patterns and 
a library of Haskell functions for manipulating them. The 
Tidal DSL is simply a Haskell string that is parsed into an 
internal data structure representing a rhythm. For example, 
the single line program: 

d1 $ sound “bd sn sn”  

would play a loop comprised of a bass drum hit on every 
first beat and snare hits on every 2nd and 3rd beat. sound 
is the Haskell function that parses the string “bd sn sn” 
into the internal rhythm representation, and d1 is the 
function that “plays” the rhythm. The Tidal DSL can be 
analyzed through the three questions of the calcification 
process.The “full system” in general is the Haskell 
language, and given no time constraints, virtually all parts 
of the system are malleable and any structure is eventually 
expressible. From this total system, the behaviors to be 
calcified are the expression of simple rhythms and their 
combination into poly-rhythms. In creating an interface for 
expressing these behaviors, the Tidal syntax is a much more 
efficient textual representation of rhythmic patterns than 
any representation possible using Haskell syntax.  

Tidal also presents a library of functions for transforming 
rhythms. For example, in the single line program: 

d1 $ rev sound “bd sn sn” 

The function rev reverses the pattern object created by 
sound “bd sn sn”. The pattern transformation API, 
which is implemented as a set of Haskell functions, presents 
the more malleable part of the interface. Functions can be 
combined in various ways and new functions can be written 
on the fly in a bundled Emacs interpreter.   

Though Tidal’s initial setup is configured to run as a drum-
machine, its core library is intentionally designed to let 
users send real-time OSC messages to any application, 
making Tidal a generic DSL for rhythmic patterns.  

Tidal utilizes two particular design strategies that can be 
used in other contexts. Firstly, its creation of a DSL 
provides a powerful method for defining complex objects, 
and is much more efficient than a conventional API. 
Secondly, its design decouples the core structure (in this 
case, the rhythmic pattern generator) from instances of its 
use (i.e a drum machine). Though Tidal comes pre-
configured to sequence drums, it can easily be used to 
sequence melodies, lighting, and more.  

NEW LIBRARIES 
The following libraries attempt to follow Tidal’s example 
and create generic, structure-defining DSLs which are 
embedded within an environment that lets users “plug in” 
the specific behavior around those structures. In particular, 
we aimed to create Python libraries that could assist in the 
“high level” organization of a musical performance. 
Trees 
We wanted to build an efficient interface for working with 
tree structures, and we used the calcification framework to 
help build a DSL for the task. 
Design Process 
The specific use-case for the tool would be to store 
variations of melodies - a node would contain a particular 
melody, and its children would contain algorithmically 
generated variations on that melody. However, we also 
wanted the interface to be more generally useful for 
working with trees.  We knew we wanted our environment 
to be the Python programming language, and thus any types 
of operations on trees were representable, given enough 
time.  

We determined that the core behaviors we wanted to calcify 
were 1) traversing through the tree one node at a time (i.e 
moving from a node to its parent, a child, or a sibling) and, 
2) generating a child node from a parent node by creating a 
variation on the parent node’s melody. We realized that, if 
we viewed these two operations (traversing node to node 
and creating a new child) as functions, the only information 
they would require were 1) what the current position in the 
tree is, and 2) a function that creates a variation on a 
melody given a source melody. We also decided that, for 
reasons related to the initial musical use-case, we would 
want a tree where the children of a node are stored as a list 
(where order matters) rather than as a set.   

To create an efficient representation of these behaviors, we 
decided to create a DSL where each of 5 functions (move to 
parent, move to a child, move “forwards” in the sibling list 
to a sibling, move “backwards” in the sibling list to a 
sibling, create a new child) would represented by symbols. 
We implemented a simple Node object in Python such that 
calling node.execute(“symbols from tree 
DSL”) would execute, in order, the functions specified by 
the symbols in the DSL string. 

Implementation 
A tree is instantiated with an initial melody object 
rootMel and some function transFunc that takes a 
melody as an argument and returns a variation of it.  

t = TreeBuilder(rootMel, transFunc) 

t is now a tree object with a single node, and that node’s 
value is the object rootMel. t.currentNode is the 
pointer to the current position in the tree, and t.root is a 
pointer to the root.  

The language itself has has 5 core operators: 



 \/! : creating a child for the current node. Each node has 
a list of children, and this places the new node at the end of 
the list. The value for that child is the output of 
transFunc(t.currentNode.val) 

^ : moves the the current node pointer to the parent of the 
current node (but does nothing if the current node is the 
root) 

\/ : moves the current node the first of its children (but 
does nothing if there are no children) 

< : moves the current node to its previous sibling (rolls over 
to the end of the list if the current node is the first sibling) 

> : moves the current node to its next sibling (rolls over to 
the start of the list if the current node is the last sibling) 

Executing the line t.executue(“\/! ^ \/! ^ \/! 
< \/! ^ \/!”) would create a tree with the structure 
shown in figure 1, with the numbers signifying the order in 
which the nodes are created: 

!  
Figure 1. The tree structure produced by  

t.executue(“\/! ^ \/! ^ \/! < \/! ^ \/!”) 

Further operators include : 

>! : creating a new sibling after the current node. The value 
for that newly created node is the output of 
transFunc(t.currentNode.val) 

<! : creating a new sibling before the current node. The 
value for that newly created node is the output of 
transFunc(t.currentNode.val) 

\/:n : moves down to the nth child (wraps around if n > 
num children) 

>:n and <:n : moves forwards/backwards n steps in the 
sibling list (wraps around if end/start of list is reached) 

(...)*n : repeats the sequence of symbols in the 
parenthesis n times  
e.g. \/! (>! >! \/!)*2 becomes  
\/! >! >! \/! >! >! \/! 

The code in figure 2 will produce the tree in figure 3 (this 
example is intended to show the structure of the tree and 
order of the nodes created. It does not show the intended 
usage of node-values and transformation functions).  

!  
Figure 2. Example code for building a tree 

!  
Figure 3. Tree generated by code from Figure 2 

Extensibility 
Though the author’s intended use case for this library is to 
track variations of melodies, the tree can track the variation 
of any type of object, provided that users supply an 
appropriate function to the constructor for creating 
variations of the supplied object type.  

Users need not use the variational aspect of the tree at all. 
Calling the constructor with no arguments allows the user to 
build and traverse a tree with empty values. Also, a node’s 
val property is publicly accessible, allowing users to store 
arbitrary values at any node in the tree. 
State-transition networks 
A second problem we wanted to tackle was creating an 
efficient interface for describing event-based state-
transitions. A similar process of calcification led to the 
following DSL. We determined that it would be most 
efficient to model the state-transition network as a directed 
graph, where states correspond to nodes and events 
correspond to named edges. The language uses syntax 
similar to DOT [6] for describing event transitions. The 
line: 

s1 --(e1)--> s2 



Would indicate that an event of type e1 would trigger a 
transition from state s1 to s2 (given that the system is in 
state s1). Compound statements such as:  

s1 --(e1)--> s2 --(e2)--> s3   

would be equivalent to the two separate statements: 

s1 --(e1)--> s2 

s2 --(e2)--> s3 

The network setup in figure 4 is visualized by the  transition 
graph in figure 5, with “event” names in parenthesis. 

!  

Figure 4. Example code for building a transition network 

!  
Figure 5. Topology of the transition network from Figure 4 

An “event” can be triggered by sending an OSC message to 
its address, which is “/” plus its string.  

Each state corresponds to a function, which is called when 
the state is entered. When constructing a transition network, 
the state-function mapping can be passed into the 
constructor as a Python dictionary (as shown by funcMap 
in the code). Because Python supports a “callable” interface 
for objects, users can even pass in classes so that the 
“function” that executes for a state has “stateful 
behavior” (i.e. has memory). 

If no default state is set, the start state is the “from” node of 
the first edge described. The network supports logic for 
being in multiple states at once, and the “state-transition” 
logic upon the occurrence of an event is analogous to that 
of an NFA (Nondeterministic Finite Automaton). Users can 
also explicitly set the desired state(s) of the network via a 
class variable. 

HYBRID LIVE CODING AND CALCIFICATION 
Integrating instrument-like interfaces (ILIs) into a live-
coding system allows for both level-4 liveness and powerful 
malleability. We define “instrument-like interfaces” to be 
any interfaces that are physically actuated in real-time (e.g., 
analog instruments, digital keyboards, faders and sliders, 
etc.). A simple yet powerful way to integrate ILIs and live-
coding is to record the actions taken on an ILI and make the 
time-series of events available as data for manipulation via 
live-coding. For example, a performer could play a melody 
on a piano and record it into the live-coding system, and 
then algorithmically manipulate the melody and replay it 
using some predefined functions.  

Live coding is especially powerful when combined with 
digital ILIs, which are ILIs that send MIDI, OSC, or other 
such digital messages. The performer can define arbitrary 
handler functions for input events (MIDI, OSC, etc) from 
the ILI during the performance itself and execute arbitrary 
blocks of code with the push of a button. If the goal for 
calcification in pure live-coding environments is to create a 
level-3 live interfaces for a behavior, the goal for 
calcification in hybrid live-coding environments with ILIs 
is to create a level-4 live interfaces for a behavior. 

This new goal presents new challenges. When trying to 
calcify behaviors and structures in pure live-coding, the 
parameters for those behaviors and structures are also 
expressed in code. For example, when trying to create an 
API, the arguments to those functions can be anything 
expressible by code. When trying to calcify behaviors and 
structures for level-4 liveness hybrid live coding systems, 
the behaviors to be calcified are parametrized by both 
level-3 live inputs (code, selections from a graphical menu, 
etc.) and level-4 live inputs (events from an ILI). However, 
the level-4 live inputs (for example, MIDI messages) will 
often be much less expressive than code, and there are a 
limited amount of physical inputs (sliders, keys, etc) on an 
ILI, thus limiting the number of input parameters to work 
with. The challenge in trying to calcify for level-4 liveness 
is to create an interface that is as expressive as possible 
with respect to its level-4 live inputs while being efficient 
about the number of physical inputs used. 



For example, in an environment consisting of MIDI 
keyboard and a live-coding environment that allows live-
coding handlers for MIDI events, we want to calcify the 
given behavior: given a chord progression that is playing in 
the background, “autocorrect” the notes played on a 
keyboard such that a user will never play a note that is out 
of key with respect to the chords in the progression. In this 
behavior, the level-4 live input is the note being played, and 
the level-3 live input is the set chords played in the 
progression. Since there are potentially several different 
strategies for determining the correct note, we could say 
that the function defining a particular strategy another 
level-3 live input, to be determined by code in the definition 
of the MIDI event handler. The user could even decide that 
they want to be able to “hot swap” the autocorrect strategy 
with the press of a button, thus making the choice of 
autocorrect function a level-4 live parameter. However, the 
cost is that there is now 1 less button available to map for 
other uses. 
FUTURE WORK 
Effective calcification of a behavior is highly dependent on 
the affordances [4] of the interface(s) used in a hybrid live-
coding system (an object’s affordances are the ways in 
which it can be interacted with). Going forward, we wish to 
analyze the affordances of various interfaces in order to find 
common design patterns that can arise in the building of 
live performance systems. In the long run, we wish to 
develop a vocabulary for describing music performance 
interfaces that is analogous to the Cognitive Dimensions of 
Notations (CDN) [5]. The CDN is a set of terms, each of 
which describes a relatively independent property, or 
dimension, of notation systems. The definition of a set of 
dimensions makes it easier to clearly describe the 
advantages and disadvantages of a design decision - a 
particular decision can be said to strengthen some 
dimensions and weaken others. The definition of a 
“Dimensions of Performance Systems” would be an 
invaluable tool in making the calcification process more 
rigorous - calcification could be formulated as a way to 
move from one point in the dimension space to another.  
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